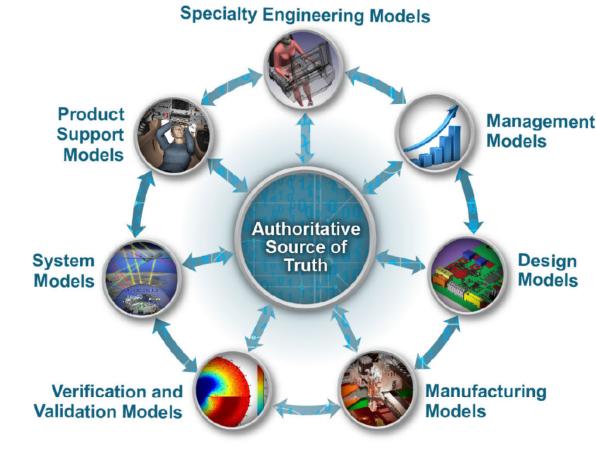


Mark Norris CEng MIMechE MBA mark.norris@theSDMconsultancy

Agenda

- Introduction
- Technology landmarks over 20 years of SDM and SPDM
- Challenges and solutions
- Conclusions

Introduction



- Germany's leading companies, BMW, Audi,...
 - Invented Simulation Data Management,
 - Invented Simulation Process and Data Management
 - Use SPDM to manage all their simulations; FEA, CFD, 1D,....
 - We have 20 years experience of how to succeed with SPDM
- The business impact of SPDM in mainstream product development has been impressive, even transformational for leaders
- Simulation on a digital platform must be the future of engineering
 - The US DoD has now mandated Digital Engineering for all programs: managed models on a digital platform, an enduring source of truth
- But uptake of SDM has been much lower than PDM
- The integration of PIDO to SDM is one way to accelerate adoption

openSPDMTM

Going forward, models, CAE applications and data will be managed on a Digital Platform

- The US Department of Defense published its Digital Engineering Strategy in 2018, the DoE just launched a similar program
- Going forward, it will be mandatory to manage models, applications and data on a Digital Platform, an Authoritative Source of Truth
- To achieve this we need to connect models, applications and data to the platform – that is called SPDM

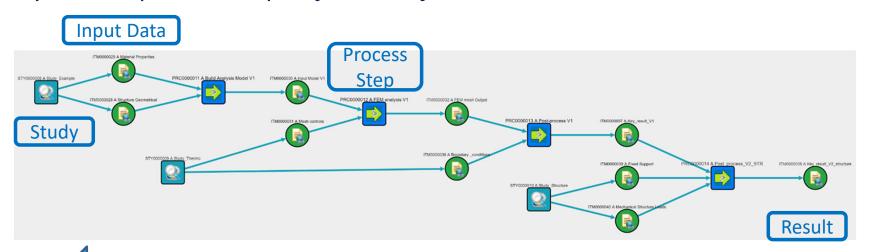
Key: Data

Digital Engineering Strategy

©openSPDM Ltd

The 3 purposes of an SDM solution

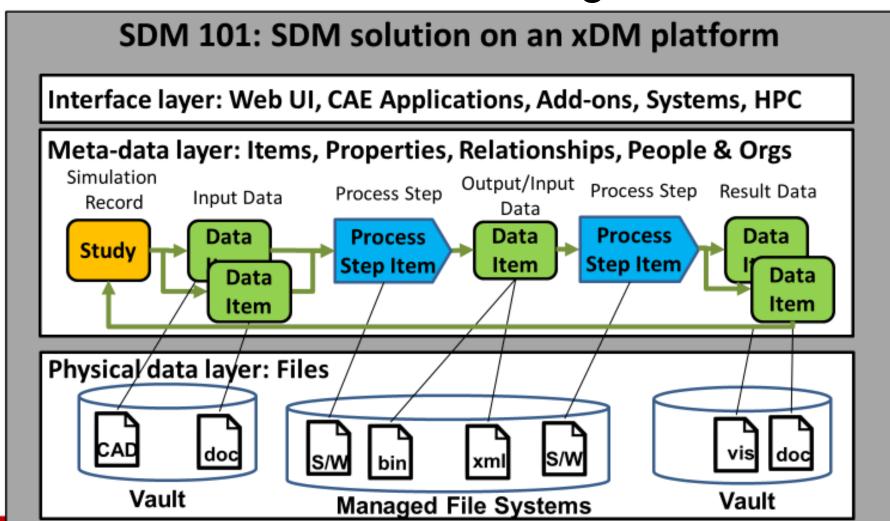
- To provide an **ergonomic** working environment for simulation engineers to
 - find the data necessary to execute numerical simulations
 - launch CAE applications and save outputs to a structured digital repository
 - painlessly capture metadata and the digital thread to document their activities
 - share the results and conclusions of simulations with peers, managers and clients
- To provide a secure, productive information system to support Digital Engineering
 - Provide traceability of data and processes to assure confidence in results
 - Support **digital certification** of products
 - Protect intellectual property (IP)
 - To provide productivity gains from data management automation
- To provide a platform for process automation for advanced applications; PIDO, Surrogate Modelling, UQ, RD, Data Mining, Artificial Intelligence, Machine Learning, Digital Twins,...



How did you get this result?

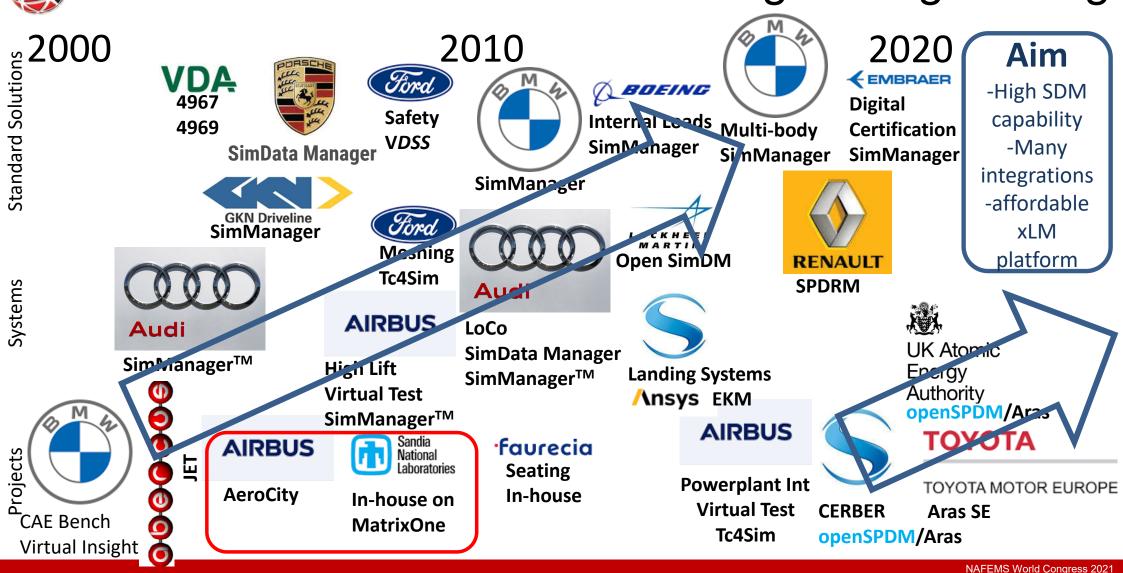
SDM uses **graph technology** to trace the **Digital Thread** from results through the process back to the inputs.

The engineer:

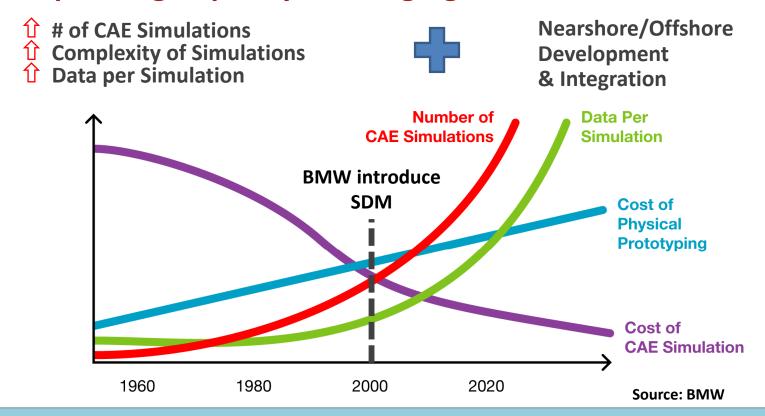

- can display the complete simulation process followed
- open any data or process step object with just one click

Expands from leaf to root

Simulation Data Management Solution



20 YEARS OF SDM AND SPDM


Milestones on the Timeline to Digital Engineering

BMW & SGI invented SDM to assure quality as simulation replaced prototype testing

Expanding Capacity, Managing Process & Data

Driving Demand for Analyst Productivity

and increased engineering throughput: reducing time to perform a safety simulation

2002: 2.5 days per simulation

Learning by C	rash Simulation and Pro	totype Testing*
ing simulation, their that can be reused Prototype-build co modifications, but	re is a one-time fixed investment with modifications during the fo	on of the magnitude and number of up cost and time substantially.
Experimentation Step	Simulation Only (per iteration)	Physical Prototype Only (per iteration)
1. Design	Technical Meeting	Planning and Piece Part Design
	less than 0.5 days	 more than 2 weeks (involves many meetings)
2. Build	Data Preparation and Meshing	Design and Construction
	small change: less than 0.5 days	 using existing model: 3 months (at \$150,000 per prototype)
	significant change: 1 weekentire automobile: 6 weeks	 new model: more than 6 months (at up to \$500,000 per prototype
3. Run	Crash Simulation	Crash Physical Prototype
	 1 day (varies with computer hardware) at \$250 per day 	1 week (includes preparation of test area)
4. Analyze	Post-Processing and Analysis	Data Preparation and Analysis
	 less than 0.5 days 	 1 day (crash sensor data only)
		 1 to 3 weeks (data, crash films, and analysis of physical parts)
Total approxi- mate time	2.5 days to 6.3 weeks	3.8 months to more than 7 months
Typical cost	Less than \$5,000	More than \$250,000

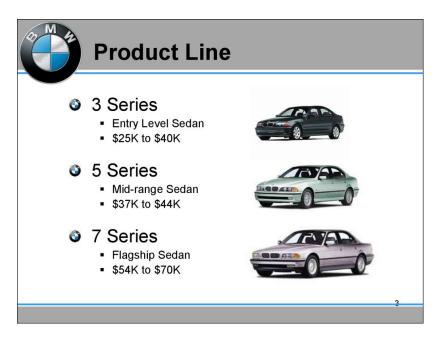
2018 ten simulations per day fully documented and traceable

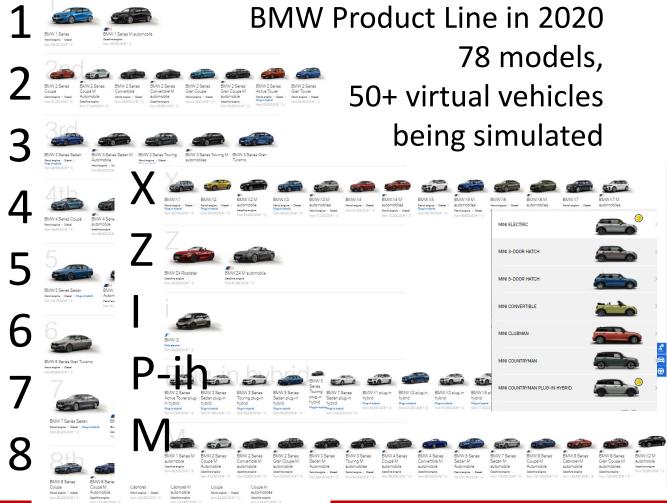
PROCESS INTEGRATION IN SPDM AT BMW GROUP. USAGE OF SPDM AT BMW GROUP: CAE-BENCH.

ObjectType	Count	Size
Submodel	> 500,000	> 90 TB
Inputdeck	> 1,300,000	> 350 TB
Result	> 1,000,000	> 500 TB
KeyResult	> 60,000,000	> 40 TB
Report	> 110,000	
	Over all	> 970 TB

up to 5.000 simulations per day
> 3.4 million simulation data sets

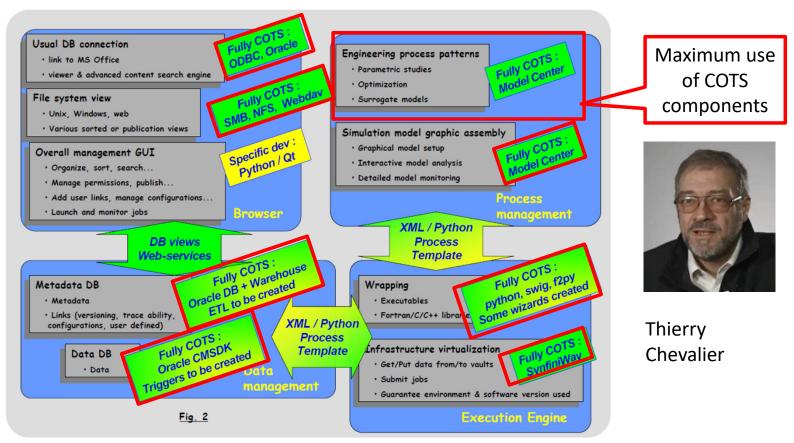
up to 500 concurrent users


7 x 24 operating


Process Integration in SPDM at BMW Group. I November 28, 2018

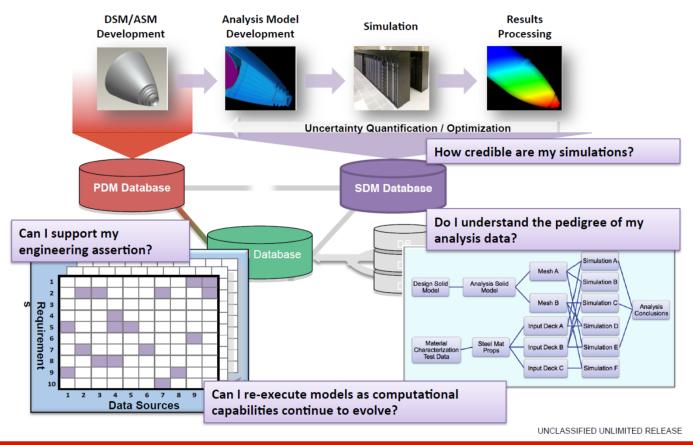
The Engineering Revolution @ BMW through SPDM

BMW Product Line in 2000 3 models, 3 virtual prototypes Simulation replaces test

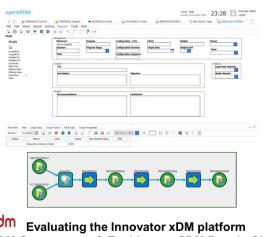


NAFEMS World Congress 2021

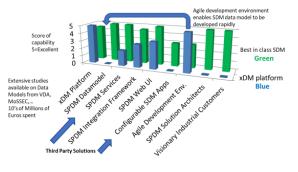
Airbus in-house SDM for CFD, platform for PIDO



Airbus Aerodynamic Framework : AeroCity; T.Chevalier; Airbus; International Conference on Trends in Product Life Cycle Modelling, Simulation and Synthesis PLMSS-2006.

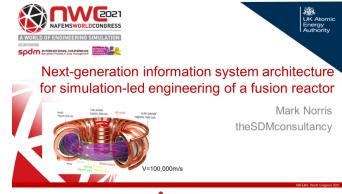

Sandia Labs: SAW Workbench underpinned by SDM Support the Design-To-Analysis

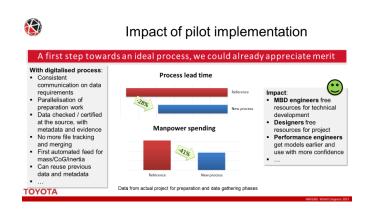
Support the Design-To-Analysis process, capturing data in context



theSDMconsultancy

Revolution in Simulation Management: a fourth generation of openSPDM has arrived





Spdm 2019

Spdm 2021

Spdm 2018

DEPLOYMENT CHALLENGES AND SOLUTIONS: INTEGRATION IS THE NUMBER 1 CHALLENGE

SDM is inherently Different to PDM

PDM: many 1000s of people 1 application

TEAMCENTE

SDM: 10s to 100s of people 100+ applications

With thanks to Naval Group

With thanks to Adrian Murton

Cost of integrations between 100's of CAE desktop applications and platforms is a major obstacle

Post-Processing

Current Technology:

- Development of point to point, API to API, connectors
- 30 to 80 connectors need to be developed for an enterprise project
- Connectors need multiple versions and frequent updates
- Competences on both data platform and CAE application APIs are rare
- Conflicts between vendors, difficult to test
- Connectors specific to a platform
- ~800 connectors needed for industry coverage
- A major obstacle to digital engineering

Next steps to accelerate SPDM adoption as seen by a practitioner

Challenges

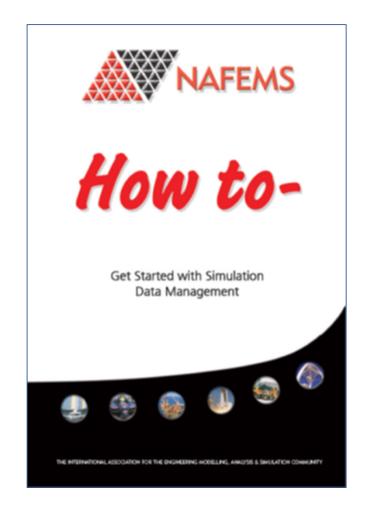
- Speed of deployment
- CAE application integration

- Access to best practice thinking
- Expertise shortage

Solutions

- New methodologies: "How to get started with SDM" publication
- 1. Integration of PIDO and/or
- 2. A standard application integration approach, implementable by a simulation methods team
- NAFEMS SPDM Best Practices Team
- Education and training, open source SDM availability

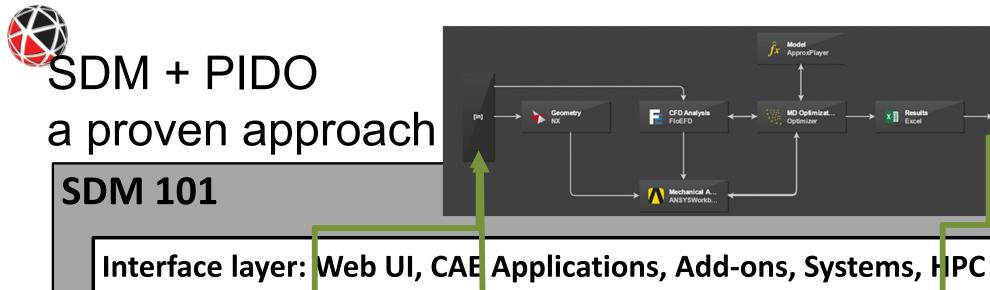
How to get started with Simulation Data Management

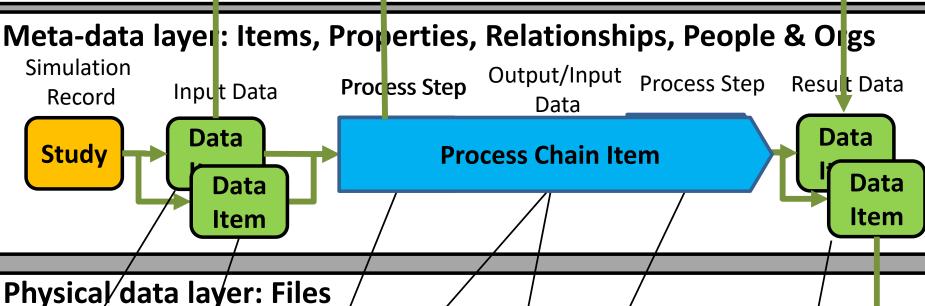

https://www.nafems.org/publications/resource_center/ht52/

"Having read the book from cover to cover, I now feel far more equipped to make serious decisions about how to instantiate a digital thread around our engineering design systems. Based upon 20+ years of industry success (and failure) in managing simulation data, this is an insightful guide for any organisation that plans to leave behind the 98% who currently don't exploit SPDM policies and infrastructure. To design and optimize the complex engineering solutions that will deliver a Net Zero planet, and to certify those products "in-silico", SPDM must be treated as a supporting pillar of the engineering design process. Mark's book is a clearly written primer, pointing any serious engineering company towards a digitally enabled future".

Dr. Rob Akers

UK Atomic Energy Authority Head of Advanced Computing United Kingdom Atomic Energy Authority Culham Science Centre


A standard approach, like FMI, will enable affordable integration of hundreds of interactive applications


SDM/PLM2
SDM/PLM3
SDM/PLM4
SPDM 1
SPDM 2
SPDRM
BdD Metier
BdD Metier

Technology under development:

- Standard specification
 - Standard exchange protocol
 - Defined Parameters & file format
- Development competences in application scripting are available: Methods departments, engineers, integrators, application vendors,.....
- Independence of complex platform APIs
- Connectors re-usable between projects and platforms
- 10 times less expensive, saving of €000,000s per project

Conclusion

- Levering P7's process modelling and integration framework will accelerate SDM deployment
 - CAE application integrations already available
 - Integrate 1 application instead of 30+
- Simulation results can be used directly to build surrogate models in P7
- Direct CAE application integration can then support adhoc simulation activities

Thank you for your attention

e.mark.norris@gmail.com